An initiative of :



Stichting Food-Info




Food-Info.net> Topics > Food Safety > Bacteria > Overview of food-borne bacteria

Staphylococcus aureus

General characteristics

S. aureus is a spherical bacterium (coccus) which on microscopic examination appears in pairs, short chains, or bunched, grape-like clusters. These organisms are Gram-positive. Some strains are capable of producing a highly heat-stable protein toxin that causes illness in humans.

Disease symptoms

Staphylococcal food poisoning (staphyloenterotoxicosis; staphyloenterotoxemia) is the name of the condition caused by the enterotoxins which some strains of S. aureus produce.

The onset of symptoms in staphylococcal food poisoning is usually rapid and in many cases acute, depending on individual susceptibility to the toxin, the amount of contaminated food eaten, the amount of toxin in the food ingested, and the general health of the victim. The most common symptoms are nausea, vomiting, retching, abdominal cramping, and prostration. Some individuals may not always demonstrate all the symptoms associated with the illness. In more severe cases, headache, muscle cramping, and transient changes in blood pressure and pulse rate may occur. Recovery generally takes two days, However, it us not unusual for complete recovery to take three days and sometimes longer in severe cases.

Infective dose--a toxin dose of less than 1.0 microgram in contaminated food will produce symptoms of staphylococcal intoxication. This toxin level is reached when S. aureus populations exceed 100,000 per gram.

Diagnosis

In the diagnosis of staphylococcal foodborne illness, proper interviews with the victims and gathering and analyzing epidemiologic data are essential. Incriminated foods should be collected and examined for staphylococci. The presence of relatively large numbers of enterotoxigenic staphylococci is good circumstantial evidence that the food contains toxin. The most conclusive test is the linking of an illness with a specific food or in cases where multiple vehicles exist, the detection of the toxin in the food sample(s). In cases where the food may have been treated to kill the staphylococci, as in pasteurization or heating, direct microscopic observation of the food may be an aid in the diagnosis. A number of serological methods for determining the enterotoxigenicity of S. aureus isolated from foods as well as methods for the separation and detection of toxins in foods have been developed and used successfully to aid in the diagnosis of the illness. Phage typing may also be useful when viable staphylococci can be isolated from the incriminated food, from victims, and from suspected carrier such as food handlers.

Associated foods

Foods that are frequently incriminated in staphylococcal food poisoning include meat and meat products; poultry and egg products; salads such as egg, tuna, chicken, potato, and macaroni; bakery products such as cream-filled pastries, cream pies, and chocolate eclairs; sandwich fillings; and milk and dairy products. Foods that require considerable handling during preparation and that are kept at slightly elevated temperatures after preparation are frequently involved in staphylococcal food poisoning.

Staphylococci exist in air, dust, sewage, water, milk, and food or on food equipment, environmental surfaces, humans, and animals. Humans and animals are the primary reservoirs. Staphylococci are present in the nasal passages and throats and on the hair and skin of 50 percent or more of healthy individuals. This incidence is even higher for those who associate with or who come in contact with sick individuals and hospital environments. Although food handlers are usually the main source of food contamination in food poisoning outbreaks, equipment and environmental surfaces can also be sources of contamination with S. aureus . Human intoxication is caused by ingesting enterotoxins produced in food by some strains of S. aureus , usually because the food has not been kept hot enough (60°C, or above) or cold enough (7.2°C, or below).

Prevention

Total prevention is not possible, however properly stored, heated and cooked foods are generally safe. The largest risk is cross-contamination, where cooked material comes into contact with raw produce or contaminated materials (cutting boards). Improper food handling and storage causes the bacterium to grown and toxins to be produced. Subsequent cooking may not destroy the toxin.

Risk populations

All people are believed to be susceptible to this type of bacterial intoxication; however, intensity of symptoms may vary.

Sources:

The bad bug book : http://www.cfsan.fda.gov/~mow/intro.html

 


Food-Info.net is an initiative of Stichting Food-Info, The Netherlands

Free counters!